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a b s t r a c t 

Neurodegenerative diseases are excessively affecting millions of patients, especially elderly people. Early 

detection and management of these diseases are crucial as the clinical symptoms take years to appear 

after the onset of neuro-degeneration. This paper proposes an adaptive feature learning framework us- 

ing multiple templates for early diagnosis. A multi-classification scheme is developed based on multiple 

brain parcellation atlases with various regions of interest. Different sets of features are extracted and then 

fused, and a feature selection is applied with an adaptively chosen sparse degree. In addition, both linear 

discriminative analysis and locally preserving projections are integrated to construct a least square re- 

gression model. Finally, we propose a feature space to predict the severity of the disease by the guidance 

of clinical scores. Our proposed method is validated on both Alzheimer’s disease neuroimaging initiative 

and Parkinson’s progression markers initiative databases. Extensive experimental results suggest that the 

proposed method outperforms the state-of-the-art methods, such as the multi-modal multi-task learning 

or joint sparse learning. Our method demonstrates that accurate feature learning facilitates the identi- 

fication of the highly relevant brain regions with significant contribution in the prediction of disease 

progression. This may pave the way for further medical analysis and diagnosis in practical applications. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Neurodegenerative diseases, such as Parkinson’s disease

PD) ( Marek et al., 2011 ) and Alzheimer’s disease (AD)

 Alzheimer’s, 2015 ) are among the most common neurological

isorders in the elderly people ( Adeli et al., 2016 ). PD is a long-

erm degenerative disorder of the central nervous system that

ainly affects the motor system. AD is a chronic neurodegener-

tive disease that destroys memory and other important mental

unctions. Since the symptoms of these degenerative diseases of

ervous systems appear progressively, patients in middle or late

tage suffer from various inconveniences and endless pains, even

ife-threatening problems ( Aerts et al., 2012 ). Apart from motor

ymptoms, non-motor symptoms such as depression, anxiety, and
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leep disorders also degrade patients’ quality of life ( Braak et al.,

003 ). 

There is no known cure for neurodegenerative diseases to date

 Nilashi et al., 2016 ; Schaffer et al., 2015 ). The current diagnosis

ainly depends on clinical symptoms, the clinicians’ knowledge

nd experience ( Nilashi et al., 2016 ; Postuma et al., 2015 ). Mean-

hile, the conventional clinical symptoms adopted for diagnosis

nly occur when the relevant biomarkers already show the pro-

ression of the lesions ( Weiner et al., 2006 ). Therefore, patients di-

gnosed using the traditional approaches are mostly at middle or

ate stage of such diseases. To accurately identify different stages

nd improve analytical effectiveness to reduce patients’ suffering,

arly automatic medical diagnosis is highly desirable for detecting

heir progression of these diseases. 

Common prodromal stages of neurodegenerative diseases in-

lude scan without evidence of dopaminergic deficit (SWEDD) for

D ( Marek et al., 2011 ) and mild cognitive impairment (MCI) for

D. MCI is further divided into light MCI (lMCI, who suffers from

https://doi.org/10.1016/j.media.2019.101632
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.101632&domain=pdf
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light MCI) and stable MCI (sMCI, whose symptoms are stable

and will not progress to AD in 18 months) ( Alzheimer’s, 2015 ).

SWEDD presents the clinical symptoms without obvious dopamin-

ergic deficit, which has high potential of PD onset. 

Unlike most previous binary classification tasks, we consider a

multi-class classification problem (e.g., PD vs. SWEDD vs. NC) for

practical applications. From practical clinical application point of

view, it is more effective to build a multi-class classifier than bi-

nary classifier as only one diagnosis decision is required. Since

these neurodegenerative diseases are progressive and multiple pro-

dromal stages may occur, multiple prodromal stage patients can be

recognized for targeted intervention treatment before the nervous

system gets severely damaged. 

To date, numerous studies show that neuroimaging techniques

are promising for computer-aided diagnosis (CAD) of these dis-

eases ( Lei et al., 2017 a; Lei et al., 2017 b; Lei et al., 2017 c;

Prashanth et al., 2014 ; Wei et al., 2017 ; Zhu et al., 2016a , 2016 b).

For example, magnetic resonance imaging (MRI) and diffusion-

weighted tensor imaging (DTI) can reveal structural abnormalities

of the brain, while positron emission tomography (PET) or func-

tional MRI (fMRI) can capture functional abnormalities of the brain

( Salvatore et al., 2014 ). Many recent studies utilized neuro-images

to predict and assess the stage of diseases by machine learning

techniques. For instance, Rana et al. ( Rana et al., 2014 ) proposed a

machine learning approach for PD diagnosis with T1-weighted MRI

images. Fung et al. ( Fung and Stoeckel, 2007 ) utilized spatial infor-

mation for feature selection and classification from single-photon

emission computed tomography images for AD. 

Generally, a typical CAD pipeline for neurodegenerative disor-

ders consists of data acquisition, feature extraction, feature selec-

tion, and classification ( Zhang and Shen, 2012 ). Information pro-

vided by neuroimages is often of high dimension, which leads to

the overfitting issue with a limited sample size. To tackle this is-

sue, a feature selection method is typically applied ( Jothi and Han-

nah, 2016 ; Ozcift, 2012 ) to find a subset of features. Feature se-

lection is capable of simplifying the prediction model and avoids

the curse of dimensionality, thus enhancing the generalization abil-

ity of the prediction model. Methods like subspace learning can

also achieve this goal by transforming the original data space into

a low-dimensional space ( Seeley et al., 2009 ; Wang et al., 2016 ).

In regard to the interpretability of brain features, feature selection

methods are preferable compared to subspace learning methods.

However, it is reasonable to combine feature selection and sub-

space learning to build an interpretable as well as accurate dis-

ease diagnosis prediction model ( Zhu et al., 2016 b). Motivated by

this, we combine both feature selection and subspace learning into

a unified framework to select the most discriminative features for

automatic diagnosis. 

In addition, we build a feature selection model based on the

sparse least square regression. Since we may encounter multiple

different classification tasks of neurodegenerative diseases, differ-

ent degrees of sparseness may be required according to the specific

feature relationships and properties in different tasks. Adaptive

sparse learning is an appealing method since it adapts the sparse-

ness degree to achieve a better recognition rate ( Grandvalet, 2002 ),

and an adaptive strategy is employed to control the sparseness de-

gree in our unified model. In other words, the ratio of zeros in a

weight matrix can be adjusted according to the classification task. 

It is known that single-template based methods obtain the sim-

ple morphometric representation of each brain image via a certain

nonlinear registration method. In contrast, multi-template based

methods are more promising to discover disease status and com-

pare group difference ( Liu et al., 2016 b). It is suggested in the pre-

vious studies ( Jin et al., 2015 ; Liu et al., 2016 a; Min et al., 2014 )

that learning with multiple templates can boost diagnosis accu-

racy. For example, Min et al. ( Min et al., 2014 ) utilized concate-
ated multi-template based features of each subject and achieved

romising AD classification results. Multiple templates not only

epresent the brain information in a comprehensive way, but also

apture the disease-related discriminative information ( Liu et al.,

016 b). Also, multi-template based methods can extract multiple

eature sets of a subject derived from different templates ( Jin et al.,

015 ; Liu et al., 2016 a; Min et al., 2014 ), which can effectively re-

uce the negative impacts of registration errors and provide dis-

inct yet complementary information to identify different disease

tatus. It thus leads to more promising identification performance.

lso, by concatenating the multi-template based features of each

ubject, more promising identification results can be achieved. 

Inspired by this, we use multiple atlases with different sets

f regions of interest (ROIs) to extract different sets of features

rom the brain images. These different features are fused to-

ether to enhance classification performance by constructing a

ore discriminative and larger space of features with a reduced

imension. Specifically, we use an automatic anatomical label-

ng (AAL) atlas ( Tzouriomazoyer et al., 2002 ) for 90 and 116 re-

ions and Craddock’s spatially constrained spectral clustering atlas

 Craddock et al., 2012 ) for 200 regions since the AAL atlas is the

ost widely used atlas for brain regions extraction. The available

ull brain regions of AAL template are 116 ROIs and 90 ROIs with

erebellar. The 200 ROIs are obtained from Craddock’s spatially

onstrained spectral clustering atlas ( Craddock et al., 2012 ). More

OIs increases the interpretability since more information may be

rovided. Craddock offers multiple ROIs larger than 200, but we

elect 200 ROIs as higher numbers of ROIs increases the difficulty

f efficiently extracting features. Finally, we fuse these features to-

ether by linear concatenation. 

On this note, we propose a multi-template based adaptive fea-

ure selection method to build a reliable classification model. Also,

e integrate linear discriminative analysis (LDA) ( Lin et al., 2010 )

nd locally preserving projections (LPP) ( Zhu et al., 2016 b) to con-

truct the most informative subspace with an adaptive sparse reg-

larization ( Zhang et al., 2011 ). LDA considers the global infor-

ation by weighing the proportion of within-class-variance and

etween-class-variance, while LPP reflects the local information by

nding the similarity relevance within each feature. With the help

f global and local information in data, we select the most dis-

riminative features and discard those irrelevant features to en-

ance the classification performance in the learned feature sub-

pace ( Zhang and Ye, 2011 ). Different from existing methods fo-

using only on binary classification task with single template, we

imultaneously classify multiple different clinical statuses using

ultiple templates for practical clinical application. 

The rest of this paper is organized as follows. Section II re-

iews various feature selection and subspace learning methods for

eurodegenerative diseases recognition. Section III introduces the

ethodology of the proposed method. Experimental results are

resented in Section IV. Discussions and conclusions are provided

n Section V and VI, respectively. 

. Related work 

.1. Feature selection 

Due to the challenge of high dimensionality and limited sam-

le size, the overfitting problem could occur in data- driven anal-

sis ( Kong et al., 2014 ). To address this problem, most exist-

ng methods design a feature selection process to select most

iscriminative neuroimaging features or a sample selection pro-

ess to discard the redundant samples ( Fung and Stoeckel, 2007 ;

ei et al., 2017 a). A l 1 -regularizer (i.e., a sparse term) was intro-

uced in the estimation model for feature selection when the sam-

le size is significantly smaller than the feature dimensionality
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 Jothi and Hannah, 2016 ). Also, a group least absolute shrinkage

nd selection operator (LASSO) l 2,1 -regularizers was also intro-

uced to further improve the effectiveness. By setting the weight

f irrelevant features to zero, the whole weight matrix can reach

 sparse situation ( Chen et al., 2009 ). However, these methods just

imply regulate the weight matrix with sparse constraint, which

ails to consider to the relationship constraints. To improve it,

he relationships between modalities are considered in a feature

election model via multimodal multi-task learning ( Zhang and

hen, 2012 ). Also, more data relationships are explored in a joint

parse learning model ( Lei et al., 2017 b). The multiple subspace

earning method can take more relationship information into con-

ideration when dealing with informative neuroimaging data by

xploring relationships from many perspectives. 

.2. Subspace learning 

For feature representation, the subspace learning method has

hown great potential in various prediction tasks, especially for un-

upervised dimensionality reduction ( Zhu et al., 2016 b). For exam-

le, Wang et al. proposed sparse multi-view task-centralized en-

emble classification method ( Wang et al., 2019 ). Zhou et al. pro-

osed the latent representation learning framework using three

ifferent modalities ( Zhou et al., 2019 a). Zhou et al. maximally

tilized multimodal neuroimaging and genetic data via a stage-

ise deep neural network to discriminate AD and its early stages

 Zhou et al., 2019 b). However, these methods do not fully consider

he underlying structural information in multiple views or modali-

ies. Recently, mixed kernel canonical correlation analysis via map-

ing the high dimensional data space into the kernel Hilbert space

ather than the Hilbert space was proposed ( Jia and Fu, 2016 ). In

 Lei et al., 2017 b), a self-taught dimensionality reduction with a

ovel joint graph sparse coding model was proposed to signifi-

antly improve the prediction effectiveness. Also, subspace learn-

ng has been applied to reveal the intrinsic relationship within data

uch as principal component analysis, LDA ( Lin et al., 2010 ), locally

inear embedding ( Roweis and Saul, 20 0 0 ), and Laplacian eigen-

aps ( Belkin and Niyogi, 2003 ). Regarding the interpretability of

rain features, feature selection methods are preferable compared

o subspace learning methods, particularly in neuroimaging stud-

es, as the selected features are directly linked to the anatomy and

rovide an intuitive understanding. From a clinical point of view, a

odel for disease diagnosis should be interpretable and accurate.

ence, it is reasonable to combine feature selection and subspace

earning in a systematic manner. In this study, we use LDA and

PP to construct feature subspaces using multi-template learning.

y considering the feature relationships in the feature selection

ramework, the performance for neurodegenerative disease diagno-

is can be boosted. 

. Methodology 

The overview of our multi-class classification method is pre-

ented in Fig. 1 . The preprocessing pipeline is the same as

 Lei et al., 2017 b). First, we preprocess the original brain T1-

eighted MRI image by the statistical parametric mapping (SPM)

ool for segmentation ( Friston, 2003 ). Then, we extract the tissue

olume in the segmented regions with AAL atlas. Then we calcu-

ate the corresponding tissue volume values as feature vectors and

oncatenate them linearly for feature representation. 

We perform adaptive feature selection combined with subspace

earning to obtain the most discriminative features on the concate-

ated features. We further add an adaptive p-norm regularization

o the subspace learning methods (LDA and LPP) for feature se-

ection. The clinical scores are added as the additional features to

uild our final feature matrix for training the classifiers. Finally, we
se support vector machine (SVM) with the sigmoid kernel to clas-

ify the samples into different groups in a supervised way. 

.1. Problem formation 

Given m subjects and each has n features, we start with the

undamental linear regression model Y = WX , where Y ∈ R 

m ×c is

he ground truth label vector, c is the number of classes, X ∈ R 

m ×n 

s the input data matrix, and W ∈ R 

n ×c is the weight coefficient

atrix. In this paper, we denote row vector as A i and each column

s denoted as A 

j . We can obtain W by solving the following objec-

ive function 

in 

W 

|| Y − XW || 2 F , (1) 

here A F is the Frobenius norm (F-norm) of A . The F-norm is also

nown as the l 2 -norm or the l 2 -regularizer, which is defined as

 F = 

√ ∑ 

i 

A i 
2 
2 . Eq. (1) is a simple and straightforward linear regres-

ion model without constraint on any variables. In addition, this

quation does not take into account the properties of weight ma-

rix, resulting in an inferior performance. 

.2. Adaptive feature selection 

Feature selection and subspace learning are effective methods

 Zhu et al., 2016 a) to improve the classification performance. It is

nown that, Fisher’s LDA combined with LPP makes use of both

lobal and local information ( Zhu et al., 2016 b). The reason is the

egularized linear regression model identifies the most discrimina-

ive and relevant features for classification performance boosting.

he l 2 , 1 -norm of X, X 2 , 1 = 

∑ 

i 

x i 2 . In general, the linear prediction

odel is defined as 

in 

1 

2 

W 

|| Y − XW || 2 F + λ|| W || 2 , 1 , (2) 

here W represents the regression weight matrix. The first term

n Eq. (2) controls the overall data fitting while the second term

nsures the sparsity level of W , and λ is the hyperparameter. How-

ver, Eq. (2) only selects the smallest features without consid-

ring the complex intrinsic relationships within the data space.

herefore, the current form of Eq. (2) cannot guarantee the class-

iscriminative power of the selected features and the preservation

f the intrinsic structure of data points, which are vital charac-

eristics for good classification performance. To locate the most

istinct features, we construct a uniform subspace. Also, we uti-

ize the neighborhood structure of the original data to solve this

roblem. Following the Fisher’s LDA criterion, we add a regulariza-

ion term to penalize the objective function of Eq. (2) ( Zhu et al.,

016 b), which is denoted as 

atio = 

W 

T 
∑ 

w 

W 

W 

T 
∑ 

b W 

, (3) 

here �w represents the within-class variance and �b is the

etween-class variance. Minimizing Ratio ensures that we can get

 W with relatively small within-class variance and large between-

lass variance. Since it is time-consuming and complex to find an

ptimal solution of Eq. (2) due to its non-convexity, an equivalent

ay can be applied to minimize Ratio ( Ye, 2007 ) by defining the

abel class matrix as 

 i,k = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

√ 

m 

m k 

−
√ 

m k 

m 

, i f l abel ( x i ) = k, 

−
√ 

m k 

m 

, otherwise, 

(4) 
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Fig. 1. Framework of our proposed method. First, we preprocess the original brain T1-weighted MRI image by the SPM. Then, we extract the tissue volume in the segmented 

regions with AAL. Then we calculate the corresponding tissue volume values as feature vectors. We fuse multi-tempalate features together by linear concatenation. We 

perform an adaptive feature selection combined with subspace learning to obtain the most discriminative features on the concatenated features. Finally, we use SVM with 

the sigmoid kernel to classify the samples into different groups. 
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where label ( x i ) is the label of the subject x i and m k is the subject

amount of class k . Using the redefined class matrix, we can utilize

the global information of data distribution of original data space to

construct our subspace. 

For the relationship between data, LPP is used to maintain the

local relation within data ( Zhu et al., 2016 b). We use the graph

Laplacian method to define the similarity s i, j between subject x i 
and x j and the regularization term is given as 

R L = tr 

( ∑ 

i , j 

(
W 

T x i − W 

T x j 

)2 
s i, j 

) 

, (5)

where S = [ s i, j ] ∈ R 

m ×m denotes the affinity matrix of subjects. In

LPP, it first constructs a neighborhood graph for data X using k -

nearest neighbor and then computes the value of S by summing

each row equals to 1. Then, we can reformulate our objective func-

tion as 

min 

1 

2 

W 

|| Y − XW || 2 F + λ1 tr 

( ∑ 

i , j 

(
W 

T x i − W 

T x j 

)2 
s i, j 

) 

+ λ2 || W || 2 , 1

(6)

where λ1 and λ2 are the parameters controlling the regularization

terms. The features are then selected by a threshold value. Specif-

ically, the average weight value of all features is calculated as the

threshold to adjust the features, accordingly. The weights of fea-

tures less than the threshold value will be set to zero. The thresh-

old value can be initially adjusted according to average weight. 

We aim to reduce the feature dimension to get the most dis-

criminative features, and multiple regularizers are adopted to en-

hance performance. Instead of l 2 , 1 norm, we introduce a generalized

l 2 ,p norm in our method for adaptive sparseness control, which is

defined as 

|| W || p 
2 ,p 

= T r 
(
W 

T W 

) p 
2 
, (7)

Note that, the l 2 ,p norm is a general form of the trace norm

to enable us to flexibly search a suitable solution by adjusting the

value of p . Therefore, our final objective function is 

min 

1 

2 

W 

|| Y − XW || 2 F + λ1 tr 

( ∑ 

i , j 

(
W 

T x i − W 

T x j 

)2 
s i, j 

) 

+ λ2 || W || p 
2 ,p 

,

(8)

Therefore, we can jointly combine subspace learning and fea-

ture selection, where each feature has a representative weight

value. 
Unlike traditional regularizers, l 2 ,p norm is designed to regu-

ate the objective function and construct a subset of most dis-

riminative and relevant features. By minimizing l 2 ,p norm, we can

itigate the influence of noisy and less relevant rows in W . The

arameter p is tuned to control the sparseness degree. Smaller

 value indicates lower correlation of different modalities. Hence,

maller p value is suitable for feature selection since W approxi-

ates the low rank of the matrix. The p value is limited to 2 since

here is no sparsity when p is equal to 2. The adjusted p value can

elp to uncover underlying information among different modali-

ies. Hence, our model is adaptive to learn discriminative features

or the classification task. Eventually, we train the regression model

o select the most distinct features with the limited size. 

Our method can be discriminated from the previous methods

n the following aspects: First, unlike the previous sparse linear

egression-based feature selection methods, the proposed method

nds the class-discriminative and noise-resistant regression coeffi-

ient matrix due to the Fisher’s criterion and Laplacian graph. Sec-

nd, different from the subspace learning methods such as PCA,

DA, and LPP, the proposed method selects features from the orig-

nal space to facilitate the investigation of the results. Third, dif-

ering in the conventional LDA in Eq. (2) , the proposed method

dopts the Fisher’s criterion but still operates on the original fea-

ure space, and thus allows for an intuitive interpretation of the

elected features. Fourth, the conventional least square regression

ses traditional regularizes ( l 2, 1 norm), while our l 2 ,p norm is de-

igned to regulate the objective function and construct a subset

f most discriminative and relevant features ( Rana et al., 2014 ;

alvatore et al., 2014 ; Zhang & Shen, 2012 ). Therefore, our model

s capable of learning discriminative features for the classification

ask. 

.3. Multi-classification model 

Differing in the preceding methods that merely perform a bi-

ary classification, a multi-class classification is adopted for PD di-

gnosis in our method. In machine learning, SVM is a supervised

earning model used for pattern classification. The main idea of

VM is to find the best hyperplane that can separate different class

amples with the maximum margin. Hence, we choose the SVM to

onstruct a multi-class classification model. The free and available

oftware LIBSVM toolbox (version: libsvm-2.91) is used to perform

he classification task ( Luo et al., 2014 ). 

In binary SVM classification, we make use of the outputs of the

rediction function. In case of multi-class classification, the out-

ut of SVM prediction will change. For example, the dimension of

ecision values is equal to the number of all possible binary clas-
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Algorithm 1 Solving Eq. (8). 

Input: X : The data matrix X ∈ R m ×n , m denotes the number of subjects and n denotes the dimension of features 

Y : The target matrix Y ∈ R m ×k , k denotes the number of target classes 

Output: 1: Initializing W̄ as w i j = 0 for ( i, j ) ∈ �; 

2: repeat 

3: Calculate ∇ f ( W (t) ) = ( X X T + λ1 XL X T ) W (t) − X Y T . 

4: Calculate W ( t+1 ) = arg min 
W 

W − W (t) + 

1 
λ(t) 

∇ f ( W (t) ) 
2 
F + 

λ2 

λ(t) 
W 

p 
2 ,p 

5: t = t + 1. 

6: until convergence 

W̄ ∈ R n ×k the weight matrix 
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ification combinations. For subjects belonging to k class, we can

elect all the binary combination. Then, a total of n ×( n -1)/2 clas-

ification models are constructed. The final performance of multi-

lass is obtained from the best result in all the n ×( n -1)/2 binary

ombinations. ultimate goal is to find the best W in Eq. (7) . Since

q. (7) is a convex but non-smooth function, we solve it by design-

ng a new accelerated proximal gradient method ( Prashanth et al.,

014 ; Seeley et al., 2009 ). We first conduct the proximal gradient

ethod on Eq. (7) by setting 

f ( W ) = || Y − XW || 2 F + λ1 tr 

( ∑ 

i , j 

(
W 

T x i − W 

T x j 

)2 
s i, j 

) 

, (9)

 ( W ) = f ( W ) + λ2 || W || p 
2 ,p 

, (10)

Note that, f ( W ) is convex and differentiable while λ2 || W || p 
2 ,p 

is

onvex but non-smooth ( Prashanth et al., 2014 ). To optimize W

ith the proximal gradient method, we iteratively update it using

he following optimization rule 

 ( t+1 ) = arg min 

W 

P λ( t ) 

(
W , W ( t ) 

)
, (11) 

here P λ(t) ( W , W (t) ) f ( W (t) ) + 〈 ∇ f ( W (t) ) , W − W (t) 〉 + λ(t) || W −
 (t) || 2 F + λ2 || W || p 

2 ,p 
, ∇ f ( W (t) ) = ( X X 

T + λ1 XL X 

T ) W (t) − X Y 

T L =
 − S , and D is a diagonal matrix D = [ d i, j = 

∑ 

j 

s i, j ] ∈ R 

m ×m .

he λ( t ) and W ( t ) are the corresponding tuning parameter at the

 -th iteration. 

By ignoring the independent terms of W in Eq. (10) , we can

ewrite this equation as 

 ( t+1 ) = E λ( t ) 

(
W ( t ) 

)
= arg min 

W 

|| W − W ( t ) + 

1 

λ( t ) 
∇ f 

(
W ( t ) 

)|| 2 F 

+ 

λ2 

λ( t ) 
|| W || p 

2 ,p 
. (12) 

here E λ( t ) ( W ( t ) ) is the Euclidean projection of W ( t ) onto the con-

ex set λ( t ). Then, we can find a closed form solution of each row

f W ( t+1 ) . We can finally solve Eq. (7) by the accelerated proxi-

al gradient method to iteratively update the value of W ( Jothi

 Hannah, 2016 ; Nesterov, 2004 ). The algorithm is summarized in

lgorithm 1 . 

. Experiments and results 

In our study, we use the two publicly available datasets, PPMI

 Marek et al., 2011 ) and ADNI ( Alzheimer’s, 2015 ) to compare the

roposed method with other widely used methods such as Elas-

icNet and LASSO ( Tibshirani, 1996 ). We also compare the pro-

osed method with other state-of-the-art feature selection meth-

ds applied for neurodegenerative disease diagnosis: multi-modal

ulti-task (M3T) ( Zhang and Shen, 2012 ), joint sparse learning for

lassification and regression (JSL) ( Lei et al., 2017 b), multi-kernel

VM (mSVM) ( Zhang et al., 2011 ) and sparse learning which has

o p -norm regularization (SL). We conduct all the experiment on
he same datasets and evaluation standards for those methods to

chieve a fair comparison. 

.1. Experimental setup 

The model parameters in our method are the tuning param-

ters in Eq. (7) , λ1 and λ2 , and p . We set the initial values

s: λ1 { 10 −5 
, . . . , 10 5 } , λ2 ∈ { 10 −5 

, . . . , 10 5 } , and p ∈ { 0 . 1 , . . . , 2 } . 
The final values of the hyperparameters are decided by adjust-

ng the values until the overall performance reaches the peak in

he range intervals. We automatically choose the best values as

he fine-tuned parameters. We set the C and G parameters of the

VM classifier as C ∈ { 2 −10 , . . . , 2 10 } and G ∈ { 2 −10 , . . . , 2 10 } , respec-

ively, to automatically choose the result with the highest accuracy.

e choose sigmoid kernel for SVM classifier as the kernel func-

ion. The quantitative measurements for the classification perfor-

ance include classification accuracy (ACC), sensitivity (SEN), pre-

ision (PREC), specificity (SPEC), F-scores (F1), and area under the

eceiver operating characteristic curve (AUC). Additionally, a 10-

old cross-validation strategy is applied in our experiments to split

he origin data into training and testing groups. These quantitative

easurements are assessed on the classification results of testing

ata and the average validation results are obtained and presented.

.2. Data preparation 

The data used in this experiment is PD and AD subjects ac-

uired from the PPMI database and ANDI database. PPMI is the

rst internationally recognized observational study created to iden-

ify and validate biomarkers for prediction of PD progression. ADNI

s the most comprehensive effort to identify neuroimaging mea-

ures and biomarkers associated with cognitive and functional

hanges in healthy elderly subjects and subjects who have MCI

nd AD. These publicly available datasets contain an inclusive set

f clinical and behavioral assessments, brain neuroimaging scans,

nd several biological specimens. The first category of features is

rom the T1-weighted MRI scans. 

All the obtained original MRI images are preprocessed by the

nterior commissure-posterior commissure correction. Then, the 

mages are processed by skull-stripping and cerebellum removal if

0 brain regions are needed for subsequent processing. For MRI

ata, we segment the image into gray matter (GM), white matter

WM) and cerebrospinal fluid (CSF) using the SPM segmentation

oolbox. These three instances are the remarkable anatomical indi-

ators in the brain images ( Eusebi et al., 2017 ). The GM and WM

re two essential and vulnerable components of the central ner-

ous system, which plays a critical role in assessing therapeutic

mpacts and determining prognoses. The CSF is a fluid surround-

ng the brain and spinal cord that indicates pathological condition

f the central nervous system. 

In our study, we get at least 90, 116, or 200 ROIs in the brain

ased on the atlas templates. We then compute the mean tissue

ensity value of each region as features. The more regions we seg-

ent, the more feature dimensions we get. The more detailed in-
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formation, the harder feature extraction. If we simply augment the

dimension, there may be insufficient extracted features from the

images. If we want every feature extracted from the region to be

effective, the regions shall not be too large. Therefore, there are

tradeoffs for the experimental settings. 

In this work, we collect a total of 238 subjects including 62 NC,

142 PD, and 34 SWEDD subjects from PPMI database and a total of

814 subjects including 220 NC, 192 AD, and 402 MCI subjects from

ANDI database. Among the middle progression stage MCI, we fur-

ther divide the 402 subjects into 146 lMCI patients and 256 sMCI

patients. The subjects are collected under the criteria that they can

be successfully segmented and visualized, and features must be

extracted with a complete scale. Those subjects cannot smoothly

reach the final feature extraction step will be excluded. For each

disease subject, we acquire a MRI scan volume. After preprocess-

ing the MRI images, we collect 90, 116, and 200 tissue volumes

for GM, WM, and CSF, respectively. We compute the mean tissue

density value of each region in GM, WM, and CSF as features. 

Apart from these features, we also collect the clinical assess-

ment scores as features. The clinical scores for PD include sleep,

olfaction, depression, and Montreal cognitive assessment. These

scores reflect the non-motor symptoms that are unrevealed by the

imaging data. The clinical scores for AD are mini-mental state ex-

amination scores measuring cognitive impairment. These clinical

assessments contain information obtained from questionnaires an-

swered by patients or their health care professionals, prevailing to

estimate the severity and progression of non-motor state impair-

ment of PD and AD. 

Currently, the diagnosis adopted by most doctors in the clinical

practice is based on the clinical scores [8]. The diagnosis for PD is

performed using the assessment of motor symptoms such as shak-

ing, rigidity, slowness of movement, and postural instability. The

diagnosis for AD also refers to the assessment of relative clinical

symptoms. However, there is a period of 5 to 20 years between

the start of neurodegeneration and the exhibition of the clini-

cal symptoms. During this period, the patients mainly show non-

motor symptoms. These subtle symptoms are insufficient for dis-

ease diagnosis because neurodegeneration already exists as imag-

ing data shows. 

4.3. Feature combinations 

In our experiments, we perform multi-class classification NC vs.

PD vs. SWEDD, NC vs. AD vs. MCI, and NC vs. AD vs. lMCI vs. sMCI.

Using the 10-fold cross-validation method, for each subset of ex-

periment, we train the feature selection model by different feature

combination sets, i.e., G + C, W + C, and G + W + C (G for GM, W

for WM, C for CSF) for each subset of experiment. After the feature

selection, we combine clinical scores (S) with the selected feature

matrix. We run a series of experiments to analyze the effectiveness

of features over different categories and different scales. We now

collect MRI images scans features in different f eature dimensions

and clinical assessments scores features. 

Table 1 lists all the possible combinations from single type to

multiple types and shows the classification results with these dif-

ferent feature combinations. 90 ROIs means using features with a

dimension of 90 for each type (i.e., G or W). 116 ROIs and 200 ROIs

share the similar definition. Multi-ROIs means using fused feature

vectors by linearly concatenating 90 ROIs, 116 ROIs, and 200 ROIs.

We can clearly see that classification performance differs for dif-

ferent classification tasks. 

First, we found that WM has the least supportive impact almost

on all the classification tasks. The CSF has the least supportive im-

pact on some of the AD classification tasks. This also indicates that

GM has the most affecting feature to PD and AD compared with

the other two neuroimaging features. Second, we observe that fea-
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Table 2 

P -value generated from t-test strategy comparing multiple templates in different classification 

tasks. 

Template NC vs. PD vs. SWEDD NC vs. AD vs. MCI NC vs. AD vs. lMCI vs. sMCI 

90 ROIs 0.0116 0.0457 0.0121 

116 ROIs 0.0487 0.0251 0.0445 

200 ROIs 0.0195 0.0451 0.0380 

Multi-ROIs – – –
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Fig. 2. Algorithm comparison performance via 90 segmented brain regions. 
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ure combinations perform better than single feature as more in-

ormation is incorporated in the input data. Among these 2-feature

nd 3-feature combinations (4–7th row of Table 1 ), the impact is

ifferent on PD and AD experiments as G + C is the highest for PD

ubjects and G + W + C is the highest for AD subjects. This indicates

hat WM has less impact on PD than AD when it comes to diagno-

is decisions. Third, we observe that clinical scores may achieve a

it better performance compared with imaging data features (G, W,

). However, the combination of imaging data and clinical scores

erforms the best. These three classification tasks are all increased

bout 10% in terms of classification accuracy compared to those

ithout scores. This suggests that clinical scores-guided features

an significantly improve the performance since motor and neu-

odegeneration information is considered. The best feature combi-

ation chosen for NC vs. PD vs. SWEDD are G + C + S and the best

eature combination chosen for NC vs. AD vs. MCI and NC vs. AD

s. lMCI vs. sMCI is G + W + C + S. 

We also notice that, there are three segmentation ROI templates

nd a feature fusion scheme adopted in each experiment. Each

odality provides feature dimensionality of 90, 116, 200, and 406.

eanwhile, it is not revealed that which ROI templates better re-

uce the redundancy and further boost classification performance. 

To analyze the effectiveness of ROIs templates, all the same fea-

ure types are applied on the 90, 116, and 200 segmented brain

egions experiments. It is observed that 116 ROIs achieve the high-

st performance among these three single templates, which indi-

ates that 116 ROIs offer the suitable number of regions for disease

ecognition. Also, the performance of 200 ROIs template is con-

luded to be less effective for the multi-classification. The reason is

hat more accurate segmentation succeeds in providing larger fea-

ure dimension but fails to provide representative features. These

eatures may not be extracted successfully in this larger template

ue to the smaller segmented regions. Some columns of the fea-

ure values obtained from the 200 ROIs template turn out to be

ero where no feature is found. To better balance the effect of dif-

erent templates, we fuse these three ROI templates together by

inear concatenation. The results of feature combinations on multi-

OIs are shown in Table 1 . 

It is observed that our multi-template based method is

arginally higher than the best single-template based method. To

urther validate the performance of our method, we apply the t -

est (Student’s t Test) on these comparison results in Table 2 , where

he p -value indicates the probability that the results from sample

ata occurred by chance. Lower p -values indicate lower chance of

andomness. In most cases, a p -value of 0.05 is acceptable, which

eans the data is valid. In Table 2 , all the obtained p -values of

ulti-template and single-template are lower than 0.05. Based on

hese results, we believe that the multi-template method is better

han single-template method. 

.4. Classification performance 

In this section, we apply our multi-template adaptive sparse

earning multi-class classification model on the feature combina-

ions selected from IV-C for NC vs. PD vs. SWEDD, NC vs. AD vs.
CI, and NC vs. AD vs. lMCI vs. sMCI classification tasks. We com-

are our method with ElasticNet, Lasso, M3T, SL, and JSL. 

Figs. 2 , , , and –5 show the classification results of the compet-

ng methods of different classification tasks on 90, 116, 200 regions

nd multi-ROIs fused features. The first row of each figure repre-

ents the result of NC vs. PD vs. SWEDD. The second and third

ows of each figure are the result of NC vs. AD vs. MCI and NC

s. AD vs. lMCI vs. sMCI. In these figures, bar heights and the er-

or lines above the bars represent mean values and standard de-

iation of the obtained classification performances during several

ross-validations. 

We observe that the proposed ASL method achieves an accuracy

f 78.23% in the 3-class PD classification task with multi-ROIs fea-

ures, 77.48% in the 3-class AD classification task with multi-ROIs

eatures, and 64.97% in the 4-class classification task with multi-

OIs features. All the six evaluation measurements show simi-

ar fluctuations in AD experiments. However, the evaluation mea-

urements in PD experiments are not always consistent as LASSO

eaches high in SPEC but low in SEN in the 116 ROIs. Higher SPEC

eans higher true negative rate while higher SEN means higher

rue positive rate. Therefore, this result indicates that LASSO is

ore efficient on diagnosing normal controls than selecting all dis-

ase samples. We observe that the proposed method is superior to

he competing methods in terms of various metrics especially ac-
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Fig. 3. Algorithm comparison performance via 116 segmented brain regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Algorithm comparison performance via 200 segmented brain regions. 

Fig. 5. Algorithm comparison performance via multi-ROIs fused features. 
curacy and AUC. We also observe that more segmented regions do

not have a significant impact on the classification performance. It

is clear that ASL performs better than other existing methods and

eventually proves that combining feature selection and subspace

learning boost neurodegenerative disease diagnosis. 

Experiments show that LASSO achieves the worst classification

performances among all the methods. The main reason is LASSO

only selects features with sparseness regularization, which are in-

sufficient to correctly classify the neuroimaging features. On the

other hand, the SL method outperforms the LASSO and ElasticNet

methods, which makes it reasonable to integrate subspace learn-

ing into the feature selection framework. Moreover, the proposed

method clearly outperforms both conventional feature selection

and joint sparse learning methods due to the combination of two

approaches. 

We also plot the receiver operating characteristic curves (ROC)

of each classification experiment in Fig. 6 . These curves correspond

to the comparison results in Fig. 5 using the multi-ROIs features.

As we can see from the ROC curves, the AUC values in NC vs.

PD vs. SWEDD classification indicate that our method prevails over

others. Obviously, the proposed adaptive feature selection method

enhances the classification performances. The corresponding ROC

curves for NC vs. AD vs. MCI and NC vs. AD vs. lMCI vs sMCI are

also shown in Fig. 6 . Our method plots curves relatively higher

than other competing methods. Our method shows a higher AUC

value despite that all methods achieve a relatively promising re-

sult. 

Another finding is the differences between PD and AD exper-

iment. We see that PD experimental results of different methods

fluctuate larger than AD experiment especially the ROC curves.

The different data and feature structure affect the performance of

all methods. In the PD experiment, our method outperforms oth-

ers despite the fluctuation, and also proves that our method with
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Fig. 6. ROC plots comparison of competing methods on different classification tasks using multi-ROIs fused features. 

Fig 7. Classification performance of our method ASL on different classification tasks 

with different p values using multi-ROIs fused features. 

f  

t

 

t  

fi  

s  

c  

p  

m  

t

4

 

v  

v  

i  

t  

t  

c  

fi  

s  

a  

s  

o  

o  

b  

c  

t  

c  

t

4

 

d  

t  

n

 

l  

n  

s  

d  

o  

p  

v  

p  

O  

m  

t  

a  

e

 

d  

T  

r  

f  

v  

a  

m  

f  

s

 

u  

a  

t  

h  

r  

c  

(  

p

 

t  

c  

T  

f  

g  

a  

m  

A  
eature selection and subspace learning benefits the classification

ask. 

In this experiment, we also observe that the differences be-

ween multi-classification and binary classification. The best classi-

cation accuracy is only around 76%, but the multiple binary clas-

ification accuracy results are at least 90%. The main reason is that

lassifying samples into multiple classes increases the difficulty of

rediction models. Furthermore, we conduct experiments on other

ethods, which are originally used, for binary classification and

he results show superiority of our method over others. 

.5. The performance of adaptiveness 

We perform the experiment of the multi-class classification NC

s. PD vs. SWEDD and NC vs. AD vs. MCI, and NC vs. AD vs. lMCI

s. sMCI to validate the effectiveness of adaptive p -norm regular-

zation. The classification accuracy of each task is compared with

he p -value range {0.1,..,2} with a step size of 0.1. The experimen-

al results are obtained from the multi-ROIs features. In Fig. 7 , we

learly see that the p values significantly affect the overall classi-

cation performance. Different classification tasks require different

parseness regularization even for different segmented regions to

dapt itself to the environments. In the NC vs. PD vs. SWEDD clas-

ification task, the classification accuracy fluctuates larger with an

verall uprising trend compared with the other two tasks. On the

ther hand, p -value fluctuates less and goes to a steady value. The

est p- value is then used in the feature selection model for higher

lassification accuracy. The adaptive sparseness allows us to select

he best sparse degree to control the sparse feature learning ac-

ording to specific tasks. Overall, our method proves to be superior

o the previous methods. 
.6. Related ROIs 

The clinical symptoms traditionally used for neurodegenerative

isease diagnosis start to appear when relevant biomarkers shows

he progression of the lesions after more than 60% of dopaminergic

eurons are lost ( Hall et al., 2015 ; Schaffer et al., 2015 ). 

For PD, the motor symptoms however begin to occur in very

ate stages of the disease when the dopamine concentration is sig-

ificantly reduced by up to 80% ( Emrani et al., 2017 ). Early diagno-

is is therefore a main challenge in the field of neurodegenerative

iseases therapeutics. In fact, the absence of a validated indicator

f disease is the major impeding factor in understanding disease

rogression to develop treatments that can delay, prevent, or re-

erse disease progress. Identification of diagnostic biomarkers and

rogression monitoring are of highly significance in early diagnosis.

n this note, we move forward to use the adaptive sparse learning

ulti-classification model to study the most predictive features of

he progression and their correspondences, i.e., the most relevant

nd discriminative brain regions related to neurodegenerative dis-

ases. 

To find the most predictive and important neurodegenerative

isease-related brain regions, we use the best features listed in

able 2 to identify the most overall important disease-related brain

egions. The experiments are performed on the multi-ROIs fused

eatures for NC vs. PD vs. SWEDD and NC vs. AD vs. MCI and NC

s. AD vs. lMCI vs. sMCI classification tasks. We obtain the weight

ssigned to each feature from the learned multi-class classification

odel. We utilize the weight coefficient matrix W̄ generated in

eature selection process. The weight matrices present the corre-

ponding significance of all the 90 brain regions. 

We choose the top 10 regions with the highest 10 weight val-

es in 90 ROIs after cerebellum removal. The selected brain regions

re numbered by the brain section index and can be further inves-

igated for clinical practice. We choose the top 10 regions with the

ighest weight value in a descending order and delete the repeated

egions. The top 10 relevant brain regions selected from multi-class

lassification are visualized in Fig. 8 in the three different planes

sagittal, axial, and coronal). Detailed brain regions information is

resented in Table 3 . 

Fig. 8 shows the top 10 chosen features distribution with

he highest top 10 weights; color range indicates the feature lo-

ation from the most important to the 10th lowest important.

able 3 summarizes all the chosen brain ROIs in medical terms

rom 3 classification tasks. We have the following observations re-

arding the feature contributions for prediction of neurodegener-

tive disease progression: 1) Hippocampus left and right are the

ost important brain regions for NC vs. PD vs. SWEDD and NC vs.

D vs. MCI. 2) Putamen is the most important brain regions for
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Table 3 

Indices and names of recognized brain ROIs from our classification tasks using ALL template with 116 ROIs. 

NC vs. PD vs. SWEDD NC vs. AD vs. MCI NC vs. AD vs. lMCI vs. sMCI 

ROIs index ROI names ROIs index ROI names ROIs index ROI names 

38 Hippocampus_R 37 Hippocampus_L 74 Putamen_R 

80 Heschl_R 68 Precuneus_R 37 Hippocampus_L 

41 Amygdala_L 40 ParaHippocampal_R 43 Calcarine_L 

44 Calcarine_R 14 Frontal_Inf_Tri_R 68 Precuneus_R 

28 Rectus_R 39 ParaHippocampal_L 39 ParaHippocampal_L 

86 Temporal_Mid_R 71 Caudate_L 40 ParaHippocampal_R 

79 Heschl_L 38 Hippocampus_R 14 Frontal_Inf_Tri_R 

87 Temporal_Pole_Mid_L 52 Occipital_Mid_R 38 Hippocampus_R 

77 Thalamus_L 55 Fusiform_L 9 Frontal_Mid_Orb_L 

42 Amygdala_R 67 Precuneus_L 48 Lingual_R 

Fig. 8. Top 10 important brain regions, disease-related ROIs overall distribution 

from the NC. vs. PD. vs. SWEDD classification task (first row), NC vs. AD vs. MCI 

classification task (second row), NC vs. AD vs. lMCI vs. sMCI classification task (third 

row). 
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NC vs. AD vs. lMCI vs. sMCI. 3) Among the three groups of the se-

lected regions, the common ROIs confirmed is Hippocampus. This

indicates that Hippocampus is the most predictive brain region of

the neurodegenerative disease and it has been verified in existing

medical studies ( Blennow et al., 2010 ; Hall et al., 2015 ). 4) Beside

Hippocampus, Amygdala is also the confirmed predictive region for

PD ( Huang et al., 2015 ). We also discover the potential brain re-

gions of PD such as Heschl, Calcarine, and Rectus. 

In the experiment of AD, regions chosen for the two classifi-

cation tasks are different from each other despite some similari-

ties. Caudate, Occipital_Mid (middle occipital gyrus), and Fusiform

are found in the 3-class classification but not found in the 4-

class classification. Putamen, Calcarine, Frontal_Mid_Orb (superior

frontal gyrus and medial orbital) and Lingual are found in the 4-

class classification but not in the 3-class classification. These re-

gions are distinctive for the different classification task even in

the same AD experiments. It indicates that special attention shall

be paid on these brain regions that have significant contribution

on the prediction of disease progression. It requires different fo-

cus on the brain regions when differentiating sample with different

scale of stages. From the distribution of Fig. 9 , we can observe the
hosen features for PD experiment gather closely with each other.

he gathering region may be closely related with the dysfunction

f movement control and non-motor problems such as depression

nd anxiety. For AD experiment, the feature distribution is almost

onsistent within these two classification tasks with minor differ-

nces. 

We further visualize the importance of all 90 regions (cerebel-

um removal) and their detailed position in Fig. 9 . The left bar plot

n the left column of Fig. 9 shows the actual weight value extracted

rom the weight matrix W . The actual value may be different due

o the classification tasks and different datasets. The correspond-

ng top 10 important brain regions are shown in the right col-

mn of Fig. 9 . The chosen brain regions are the same results pre-

ented in Table 3 and Fig. 8 . We observe that there is a huge dif-

erence between PD experiment and AD experiment. The average

alue of corresponding weight is much smaller than that of AD ex-

eriments. The highest value for weight value in PD experiment

s around 0.6 ×10 −5 while the highest weight value in AD experi-

ent is around 0.45. The explanation is the selected brain images

nd the clinical assessment scores are totally unrelated evaluation.

n addition, we obtain four different clinical scores for PD patients

nd only one clinical score for AD experiment. Corresponding ob-

ained weight average values discrepancy will not affect the com-

arison of feature diagnostic importance. 

We focus on the relative feature significance on the different

hree classification tasks. We observe that the weight values fluc-

uations are greatly distinctive where the highest values stand out

uch ahead. The detailed value distribution is plotted in the small

ox in the bar plot of PD experiment. The large difference of that

alue observed in PD experiment indicates the discriminative abil-

ty of PD-related features are more distinctive than those of AD-

elated features. 

It is also clear that the importance is slightly different between

C vs. AD vs. MCI and NC vs. AD vs. lMCI vs. sMCI classification.

he reason is that the contribution of these regions may differ for

-class and 4-class classifications with similar overall trend. The

elected brain regions are numbered by the brain section index

nd can be further investigated and supervised in clinical practice.

. Discussions 

We investigate the importance of the brain regions via the fre-

uency of the selected ROIs by the proposed method using MRI

mages. To further study the relationship between brain regions

nd neurodegenerative disease, we attempt to identify the other

op brain regions that are most correlated with other brain regions

nder the assumption that disease-related ROIs affect each other.

e use the weighting matrix W̄ to calculate the Pearson corre-

ation coefficient to represent the correlation among different re-

ions. The results are visualized in Fig. 10 . We plot the 116 brain

egions and the arcs between them indicate the correlation be-
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Fig. 9. The importance of 116 brain regions and selected top 10 disease-related ROIs from NC. vs. PD. Vs. SWEDD classification task (first row), NC vs. AD vs. MCI classification 

task (second row), NC vs. AD vs. lMCI vs. sMCI classification task (third row). The subfigure of (a) is the zoom of the original figure for better observation. 
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Fig. 10. (a) Selected ROIs and their connections from NC vs. SWEDD vs. PD classification task with threshold 0.99. (b) Selected ROIs and their connections from the NC vs. 

MCI vs. AD classification task with threshold 0.95. (c) Selected ROIs and their connections from NC vs. lMCI vs. sMCI vs. AD classification task with threshold 0.95. 
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tween these two regions. We screen these connections by setting

a feasible threshold according to the visualization effect. Moreover,

suffix ‘L’ indicates the left brain, suffix ‘R’ indicates the right brain,

and different colors indicate different brain region connections. 

From the correlation plot, the connections with Hippocampus

cannot be found in the NC vs. PD vs. SWEDD experiment. Amyg-

dala connection is not found in the NC vs. AD vs. MCI classification

and Putamen is found in the NC vs. AD vs. lMCI vs. sMCI classifica-

tion. The explanation is the former top brain regions are chosen as

independent feature without considering the relationship of each

other. It does not provide credit for the appearance of feature con-

nections in this plot. However, the connections indicate that there

exist some connections between certain brain regions. For exam-

ple, connection between Amygdala_L and Vermis3 are found and

Amygdala_L is the third important brain region found in the PD

experiment. The connection between Precuneus_R and Insula_L is

also found and Precuneus_R is the second important brain region

found in the NC vs. AD vs. MCI experiment. Similarly, connection

between Putamen_R and Occipital_Mid_R are also found and Puta-

men_R is the first important brain region found in the NC vs. AD

vs. lMCI vs. sMCI experiment. These connections provide a broad

view of analyzing the disease progression and thus helps improve

the effectiveness of computer-aided diagnosis ( Schaffer et al., 2015 ;

Wei et al., 2017 ). 

From the clinical viewpoint, our method may benefit the di-

agnosis of neurodegenerative disorders in two ways: 1) The au-

tomatic computer-aided diagnosis method could relieve doctor’s

workload burden and help them to make clinical decisions, and

further develop treatments that can delay or prevent disease pro-

gression. 2) The selected brain features indicate the potential

disease-related ROIs, which may deserve special attention. They

may present some new disease-related regions that have not yet

been investigated. 

Our method shows potential capability in differentiating sam-

ples into different disease progression stages. Beyond the impres-

sive classification results, there are still few limitations. First, we

only focus on single imaging modality from MRI and the dataset

size is not so large. Second, the extracted features are concatenated

linearly without considering the contribution of each feature’s sig-

nificance. Hence, feature fusion may be investigated in our future

work. For the future direction of this work, we also seek to obtain

a larger dataset to train our classifier to improve the performance

and consider multimodal images. 
. Conclusions 

In this paper, we introduce a multi-template adaptive sparse

earning along with a multi-class classification model for neu-

odegenerative disease diagnosis. We use multiple brain parcella-

ion atlases with different sets of regions of interest to fuse dif-

erent features together. Specifically, we integrate the feature se-

ection and subspace learning with a p -norm regularization. In

he constructed subspace, we jointly consider the global and lo-

al information in the data space. To further identify the disease

ype for clinical application, we perform a multi-class classifica-

ion task. We verify our method using neuroimaging data and

linical assessment scores from PPMI and ANDI datasets with the

utomatically-selected discriminative features. Experiments show

hat our method is able to classify different categories simultane-

usly with promising results, which can benefit medical diagnosis

n the long run. Furthermore, we generate relevant ROIs accord-

ng to their weighing values to demonstrate the important brain

egions for further diagnosis. 
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